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Abstract-Constitutive equations for statistically isotropic triaxial visco-elastic stochastic creep are for­
mulated by generalization from a previous formulated theory of uniaxial stochastic creep. The constitutive
equations define a random strain tensor as function of a given deterministic stress tensor history.
Compatibility constraints imply that also stresses become random even for a deterministic external load
history. In order to reach solutions in terms of means and coyariances it turns out to be necessary to
linearize the constitutive equations with respect to the stress tensor increments. This Part I of the paper
terminates by discussing some solutions of relevance for comparisons with the uniaxial theory of combined
elongation end bending of slender prismatic bodies. Part 2 discusses solutions for biaxial stress histories
that are homogeneous in the mean.

INTRODUCTION

The purpose of this paper is to extend to three dimensions of uniaxial second moment white
noise creep model formulated by the writer[3]. The model is restricted to deal with isotropic
materials and it is supposed to be an extension of usual linear visco-elasticity theory to include
stochastic behavior.

In this Part 1 of the paper the stochastic constitutive equations are formulated and they are
exempified by the special case of Poisson process viscous creep. Due to the stochastic nature
of the constitutive equations also the equilibrium equations and the compatibility equations
become stochastic. In order to reach even approximate solutions in terms of means and
covariances to this set of stochastic equations and the boundary conditions, it is necessary to
linearize the constitutive equations with respect to the random stress field. With this ap­
proximation introduced particularly simple solutions are possible for the average strain in a
body subjected to given external forces. In this connection the theory of bending of beams
given in [3] is discussed in relation to the triaxial theory presented herein.

Part 2 of the paper considers biaxial stress fields and presents solutions for the covariance
structure in examples with stress fields that in the mean are homogeneous.

CONSTITUTIVE EQl'ATlONS

Let r = (x, y, z) denote the generic point of the considered material body 00, and let t and 'T

denote time. The creep strain tensor Eij(r. t) resulting from an imposed stress tensor history
l1(r. T), 0:$ T:$ t, is modeled by the stochastic integral

I
I I<7lr. T)+d<7(r. T)

Ei/r, t) = Sjj,,(r, t, T. 11) du,s
t=O u=u(r, T)

(1)

using the summation convention of tensor algebra. The stress tensor increment at time T is
denoted dl1(r, T). For fixed t the integrand Sijr.(r, t, T, 11) is a second moment white noise
random tensor process with its parameter set defined by the generic point (r, T, il), i.e. its
parameter set is the cartesian product 00 x Rox {space of stress tensors ill.

The white noise property of the integrand necessitates the particular way of writing the
stochastic integral of eqn (I). Tne integration with respect to the stress tensor is curve
integration along a straight line joining the points u(r, T) and u(r, 'T) +M(r, '7') in the stress
tensor space. Even with the assumption that the white noise tensor process Si;r. possesses
sample functions that almost surely are continuous in the stress tensor 11, it will not be suitable
to apply the mean value theorem of integral theory in order to eliminate the inner integral of
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eqn (1). The result of such an elimination would be the equation

Ejj(r, t) == r~o 5jj,,(r, t, T, 6(r, T) + (I d6(r, T» da,,(r, T) (I a)

in which 8 is some random variable with outcomes in the interval [0, 1]. There seems to be no
obvious way to come from eqn (la) to the covariance structure of the strain tensor field when
given the mean and covariance properties of 5ijrs. This difficulty disappears for the formulation
given by eqn (I). The fundamental importance of not cancelling the dependence on 6(r, 7) +
(I d6'(r, T) in eqn (la) is explained in the Remark in [3]. It is emphasized that except for this
discussion related to eqn (ta) there will be no assumption herein on continuity of the sample
functions of 5ijrs because it suffices to let the stochastic integral of eqn (1) be in the mean
square sense. The second moment white noise tensor 5,jrs has the following properties. The
mean

(2)

is an isotropic tensor which is a function solely of present time t and time T of stress increment
application. The covariance is

(3)

in which Cijklrspq (u:! Ul> t;, t:!, TI) is an isotropic tensor which besides being a function of t lo t2, '1'1

is a function of the stress tensor increment u:! - UI' With reference to the assumed isotropy of the
material the dependency of the increment u2 UI is required to be form-invariant with respect to
cartesian coordinate transformations. This implies that the functional dependency of du == U2 - U1

must be solely through the invariants of du. In the following theory it is assumed that only the norm

(4)

and no other invariants of dit matter.
In eqn (3) the symbol 0(') is the usual Dirac delta function and 0(r:!-rl)=:0(x:!-x 1)

0(Y2 - YI) 0(Z2 - ZI)'

The mean strain at r to time t becomes

(5)

Since Kij,,(t, '1') is an isotropic tensor which is symmetric in both i and j and in rand s, and
since da" is symmetric, the sufficiently most general form of Kijrs(t, '1') is, [4: p. 98],

(6)

in which A(t, '1') and B(t, T) are scalar functions of t and T, and Oij is Kronecker's delta. By
introducing a Poisson ratio function

A(t, r)
v(t. T) = - A(t, T)+ B(t, T)

and a creep function

C(t, 7) == A(t, T) + BU, '1') (8)
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the mean may consequently be written as
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E[E;j(r, 1) == f:o (1 + v(t, 'T»C(t, 'T) dUjj(r, 'T) - ~ij f:o v(t, 'T)C(t, 'T) duss(r, 'T). (9)

This is recognized as the usual constitutive equation for isotropic linear visco-elasticity except
that the left hand side is the mean strain tensor.

For the covariance we get

(10)

in which u. = u(rl' 'TI) and U2 = u(r2, 'T0. Due to the delta function factors ~(r2 - r.) ~('T2 - 'TI)

the stress tensors U2 and dU2 may be changed to UI and dUI in the last integral. By the
substitution 11 I=u dU.. 11 2 =V dUI the inner double integral thus get the value

(II)

where the last integral follows by the substitution 2y = v - u, 2z =v + u. By the second moment
white noise property of Sijr< the integrand of eqn (I I) as a function of y behaves like a Dirac
delta function. Furthermore, as mentioned above, the functional dependency of 2y dUI is solely
through the norm 2lyllldiTl ll. Thus the integral of eqn (I I) has the form

(12)

where Udull = V(dujj dUij). and the function dijklrspq(t .. t2, 'TI) like Cijldrspq is an isotropic tensor of
eighth order. By substitution into eqn (10) the covariance becomes

valid for tis t2•

From the general theory of isotropic tensors, [5: p. 260), it is known that an isotropic tensor
of 8th order may be written as a linear combination of products

(14)

of 4 Kronecker's deltas. These products are generated by letting the string of indices ijklrspq
run through all 8! permutations. However, due to the symmetry of Kronecker's delta and the
irrelevance of the order of the factors there are only 8!/(24 4!) = lOS different products.
Furthermore, since 4 of the indices in eqn (13) are summation indices and since Kronecker's
delta acts as an index substitution operator. only the following IS tensors make up the linear
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combination of the integrand of eqn (13):

da'i da.,
da'k dall
dakl dail

8ji dakl dass
8kl da,j dass
8il dajk daIS
8jk dail da"
8il dajk daIS
8'k dajj dass

8iA, (dass )2
8jk8jl (dass )2

8i/8kj (dassf

O'ISkl da" dan
8ik8il dars dars

8i/8kj dars dar,

(I5)

which all should be divided by the scalar IIMII. A further reduction of the possibilities is
obtained by noting that there should be symmetry with respect to i, j and with respect to k, I.
Denoting the scalar coefficient functions by al through a,s in the order of the list of tensors
given above this symmetry requires that a2 = a). a6 = a7 = aR = a9. a 'I = a I,. a 14 = a I). Since for
I,:S I, we have COY [E,j(r, I)). ".,(r, I,)] = COv[Ejj(r, II), Ek/(r. I,)] = COv[Ekl(r. I,). Ejj(r, 11)] =
COV["k/(r, IJ, Ejj(r, I,)], it follows that also a4 = a,. Thus the covariance of eqn (13) may be
written

COY [E'j(rl> I)), Ekl(r" I,)] = 8(r, - rl) f~o[bl daq dak/ + b,(daik daj! + dakj dUi/)

+ b,(8jj dak/ + 8.. daij) du"
+ bi8il dajk + 8ik du" +8i1 dUJk -+- 8ik dajl) das,

+8jj8kl(b5(da,s)' + b6 durs dan)
, 1

+ (8ik 8j1 + 8jl8kj )(b;(du,,)' + bRdUn du,,)] lid all (16)

for II:S I,. Herein bl>'" ,bR are scalar functions of I,. Ie- r while the stress tensor increment da
is taken at (rl> r).

In order to be able to set up models that determine the different scalar functions in
connection with some simple stress states, it is necessary to write the integrand of eqn (16) out
in its components. It suffices, however, to do this in the coordinate system of principal stress
increments, i.e. to assume that daij =: 0 for i # j. For the present purpose we therefore assume
that the coordinate system of principal stress axes is constant in time. We get

COY [E'I(rl> til, E11(r2, (2)] = 8(r, - f,)f~o [(b, +2b,) da~,
+ (2b3+4b4) dUll(dull +da22 +d(33) + (bs+2b7)(dall + da'2 + dUB)2

+ (b6 + 2bs)(dafl +da~2 + dU~3») Ild~\\ (17)

and correspondingly for E22 and E'3'

Cov [Edrh t .), EI2(r2, t2n=: 8(f2 - r,) r~o [b 2 dUll dUn + b4(d a l' +da,,)(dall + dan + d(33)

1 1 , ')] 1 (18)+ b7(dul' + dun + daD)' + bR(dull + dU2' + dai3 IIdall
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and correspondingly for Ep and E2"

Cov [E II(r" t I), E22(r2, t2)] = 8(r2 - rl) f~o [b I dUll dU22 +b,(duII +dU22)(duII +dUn + dU33)

+ b~(du" +du22 +dUBf + br,(duil +du~2 +dui3)] IId~1I (19)

and correspondingly for Elh E33 and E22' E33' All other covariances are zero.

A SPECIAL CASE: POISSON PROCESS VISCOUS CREEP

Concrete creep may be taken as an example. In [3] the writer follows Benjamin et al. [I] who
assume that there are essentially two independent stochastic creep components, viscous flow
and delayed elasticity. The viscous flow part is modeled as being proportional to a non­
homogeneous Poisson process with mean rate being proportional to some decreasing function
of time after loading. This Poisson process modeling of the viscous creep may as well be
applicable for other materials than concrete. For simplicity of illustration we will concentrate
on the viscous part herein and we will keep to the Poisson process assumption. The delayed
elasticity part may be handled in a similar way using a Markov birth process as suggested in [1].

It should be admitted that these simplifying assumptions are subject to objections in the
literature on concrete creep (numerous works of Bazant et al.). The intention of the present
paper is, however, to illustrate a possibility of stochastic modeling of the creep phenomenon
and to deduce some interesting consequences of the model. For this purpose the fundamental
assumptions of the model are kept as simple as possible. For example, the Poisson process
assumption makes it possible to express the covariance structure of the random strain tensor
field solely in terms of a single scalar function a(t, T) and the creep function, that is, the
function that describes the mean deformation behavior. In a situation with scarcity or complete
lack of interpretable experimental data such simple consistent modeling is particularly relevant.

Indeed, a remarkable property of the nonhomogeneous Poisson proceeds as a process of
independent increments is that its variance equals its mean. This property is the key to express
the functions h" ... ,bg in terms of the function C and II entering the mean creep equation, eqn
(9). Of course, it is not too realistic to have the mean creep equal to the variance of the creep,
Cinlar et al. [2]. However, this is corrected by using a creep process which is proportional to a
nonhomogeneous Poisson process. Then the variance equals the proportionality factor times
the mean. For uniaxial creep the proportionality factor is the aformentioned scalar function
a(t, T). To be specific, the modeling is as follows:

Corresponding to the principal stress increment state dUll == a dO', dU22 == PdO', dUB == 'Y dO',
dO' > 0, in which a, p, 'Yare constants normalized such that a 2 +p2 + 'Y2= 1, and which is
applied to time T, we will assume that the strain tensor process for t ~ T is proportional to a
scalar nonhomogeneous Poisson process of intensity /l(t, T) dO'. With a and b being positive
scalar functions of t and T we will take the proportionality factors aa - (P + 'Y )b, pa - ('Y +a )b,
'Ya -(ex +P)b for EI" E22' and E,3 respectively and zero for all Ejj for which i:;t j.

Referring to an infinitesimal volume element at the fixed place r the second moment
properties of this model may be compared to the general second moment properties as specified
by the mean equation, eqn (9), and the covariance equation, eqn (17), in which the Dirac delta
function factor 8(r2 - rl) is removed by integration over the infinitesimal volume element.
Writing the strain tensor at r to time t as Eij the Poisson model gives the mean

E[EII] = (aa -(P + 'Y)b)/l dO'

and the variance

For the mean, eqn (9) alternatively gives

E[EIl] = (a - II(P + 'Y»C dO'

SS Vol. 19. No. I(l-C

(20)

(21)

(22)
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while eqn (17) gives the variance
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in which A I =bl +2b2, A2 =2b3 +4b4, A} = b5 + 2bi , A4 =: b6 + 2bH.

Equations (20) and (22) are identical if and only if

I
J.l=-Ca

while eqns (21) and (23) are identical if and only if

A 2 =- 2v(l + v)aC

using eqns (24) and (25). Since Var[E,d =0 for j;t j, it follows from eqn (8) that

Thus

and the general egn (16) becomes

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

Cov [Eij(r" tIl, Ek,(r2, t2)] = S(r2 - r1) r~o [(1 + vf daij dak'

- v(1 + v)(Oij dakl + Ski daij) dass + v
2
(da,,)2o;jOk'] \I(d:r~dar,) (32)

valid for t1$ t2• In eqn (32), C, /I, a should be written as CUb T). v(t b T). and aCt!. T)

respectively while the stress tensor increment is taken at (rj, 1').

Compatibility and equilibrium
The strain tensor Eij(r, t) must satisfy the compatibility equations

and the stress tensor increment dU;j(r, t) must satisfy the equilibrium equations

dUjj.j(r, t) = 0

(3)

(34)

assuming that there are no volume forces. Due to the stochastic constitutive equation. eqn (I),

both eqos (33) and (34) are stochastic differential equations. Together with given time depen­
dent boundary conditions, eqns (1), (33) and (34) determine a random strain field history and a
corresponding random stress field history. The nonlinearity of eqn (1) leaves little hope.
however, to find by known methods any exact solutions in terms of expectations and
covariances. Thus a linearization of eqn 0) seems necessary.
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Linearization of the stochastic constitutive equation
As in (3], the nonlinear constitutive equation, eqn (I), is avoided by changing it into the

following constitutive equation, see Remark I,

I
I fElulr. ,))+dElulr. ,)) II

€;j(r. t) = Sijrs(r, t, 7', Ii) du rs + Kij,,(t, 7')(du,,(r, 1) - dE[un(r. 1)])
,=0 Elu(r. ,)) ,=0

obtained from eqn (1) by linearization with respect to U, U+ dU, and S,j".

(35)

Remark 1.
The constitutive equation, eqn (1), is of the same type as a random variable W given by

I
Y +Z

W = Y X(t) dt (36)

in which Y and Z are random variables while X(t) is a random process. Assume that solely
means and covariances are given for (X(t), Y, Z). Then it is not possible to find mean and
variance of W. It requires distributional information. However, by linearization in terms of the
first order Taylor expansion of W at the mean (E[X(t)], E[Y], E[Z)), an approximate
evaluation of E[W] and Var[W] is possible. We have

I fEIYl+EIZI fEIYJ+EIZl
W = E[X(t)] dt + (X(t) - E[X(t))) dt

ElY) ElY]

- E[X(E[Y])](Y - E[Y)) +E[X(E[Y] + E[Z])](Y +Z - E[Y] - E(Z)))

which in case E[X(t)] is a constant reduces to

I fEIY1+EIZl
W = X(t)dt + E[X(t)](Z - E[Z)).

ElY)

(7)

(8)

Equation (35) is of this last form.

The system of stochastic differential- and integral eqns (33), (34) and (35) is quite com­
plicated to deal with in full generality. Therefore some special cases will be studied in the
following.

SECOND MOMENT REPRESENTATION OF AVERAGE STRAIN IN
BODY SUBJECTED TO GIVEN EXTERNAL FORCES

In case the material body !II is subjected to given nonrandom external forces it follows from
the equations of equilibrium that

L. dUij(r, 7') and L. Xk dUij(r, 7') (39)

are both non random functions of 7'. Therefore integration of eqn (35) with respect to r across 9JJ
gives

i I 'i'lElu(r.'))+dElulr.,))
Eij(r, t) = Sij,,(r, t, 7', ii) du,s

!I ,-0 !I Elu(r. ,))

while multiplication of eqn (35) by Xk and integration give

i I'iI Elulr. '))+dElu(r. ,))
XkEij(r, t) =. Xk Sijrs(r, t, 7', ii) du"

!I ,-0 !I Elu(r. 'IJ

(40)

(41)

The expected stress tensor history E[u(r,7')] is the usual deterministic solution to the visco­
elasticity problem as given by the constitutive equations, eqn (5), the compatibility equations.
eqn (33), and the equilibrium equations, eqn (34).
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The covariance properties of the left sides of eqns (40) and (41) may be calculated by
standard technique using eqn (16). In particular, if the expected stress field is uniform
throughout the body gjJ, the covariance between the average strain tensors f;/t 1) and fk/(t~) is

(42)

in which Vol(gjJ) is the volume of gjJ and the stress tensor increments in the integrand are
expected values.

Example 1.
Let gjJ be a prismatic column of length L and cross sectional area A. The column is

subjected to an axial force N(7·) varying in time and giving a uniform expected stress field
throughout the column. It is

(43)

The average axial strain f 11(t) has the expectation, eqn (9),

(44)

while the covariance function is, eqn (42) and (16),

I I" IdN(7)I= LA T=O a(t" 7)C(t}, 7)-A-

(45)

(46)

for t}:S; t~. The last expression corresponds to the particular Poisson process model that leads to
eqn (32).

These results are seen to fit the corresponding results of the uniaxial model, [3: (2.8)-(2. I I)].
The reader should also compare eqns (44) and (46) with [3: (2.12), C2.13)].

Example 2.
In case the column of Example I in place of the axial force N(7) is subjected to a uniform

hydrostatic pressure p(7) we get, eqn (9),

E[fl\(t)] = f=o (1- 2vCt, r»C(t,') dp(7)

and, eqns (42) and (16),

(47)

I I" 2=LA\l(3) T=O (1- 2v(t" 7» a(t" T)C(th r)\dp(7)\

in which the last expression corresponds to eqn (32).

(49)
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Example 3
Let the column of Example 1 be subjected solely to normal stresses acting on the

cross-sections of the column ends such that the column is in a state of equilibrium. xI axis is in
the axial direction while X2 axis and X3 axis are in the two principal directions of the
cross-section. Origin is at the geometrical center of the column. Assume that the stresses varies
linearly across the end cross-sections. Then the normal stress history may be written as

(50)

in which N(T) is axial force, Mb) and Mb) are bending moments with respect to X2 axis and
X3 axis respectively, while 12• 13 are the moments of inertia with respect to X2 axis, X3 axis
respectively.

Subjected to the stress history defined by eqn (50) and acting at each end of the column, a
random strain field will develop in the body !i of the column. This strain field will partly show
up in terms of a random elongation and a random curvature of the column. Precise definitions
of these terms, "random elongation" and "random curvature". are as follows. Define random
processes B(t), Cit) Clt) such that the integral

(51)

for each time t is as small as possible. From setting the partial derivatives of this integral with
respect to B, C2 and C3 to zero respectively it is seen that

(52)

(53)

(54)

The random elongation of the column is defined as LB(r), noting that B(t) is simply the average
strain EII(t) of ~. The random curvature with respect to X2 axis is defined bo be C~(t), and with
respect to X3 axis to be Cit).

It is seen that the mean and covariance properties of C2(t) and C3(t) may be calculated by
use of eqn (41). For C2(t) we have

(55)

and

(56)

in which w is the cross-section of the column while c(r .. t2• T) is the function (b l + 2b, +2b, +
4b. + b~ + b6 + 2b, + 2bs)(t .. t2• T) also appearing in eqn (45). Correspondancewith unaxial-theoryis
observed by comparison of eqns (55) and (56) with [3: (3.5). (3.8)].

Remark 2
The usefulness of uniaxial theory naturally depends on the possibility of taking into account
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variation of the internal forces along the XI axis. Let w(x\) be the cross-section at XI' If it could
be stated that

(57)

are nonrandom functions of T and X I determined solely by the nonrandom external forces
acting on the column 00, then eqns (40) and (41) would be valid with integration across ~

changed to integration across w(x I) except for the approximation introduced by accepting eqn
(35).

This statement is only true, however, for i = j = 1. For that case eqn (35) becomes

tOll(r, t) = I' IE[al,. T)j-dEI""· TIl S11",(r, t, T, Ii) du" +II C(t, T)(duII(r, T) - dE[ul1(r, T)])
T~O E[a(,. Tll T~O

(58)

Integration across w(x\) gives the average axial strain at X,:

An analogous equation for L, 'I' XktO ,,(r. t) is obtained by writing Xk behind the two integral signs

J of eqn (59).
W('-j)

It is seen that the unaxial theory of bending given in [3: Section 3] comes out of the theory
herein if the second term of eqn (59) may be neglected as compared to the first term. This is so
if 1/((, T) == 0, of course, but also for sufficiently slender beam-columns as they are considered in
the usual technical theory of elastic bending in which shear force deformations are neglected.

SUMMARY AND CONCLUSIONS

A triaxial constitutive tensor equation of strain as function of stress for stochastic viscous
creep of a statistically isotropic material is formulated in terms of second moment white noise
tensor fields. In the mean the usual constitutive equation of isotropic viscous creep appears. It
contains two scalar functions of present time and of time of load application. These functions
are the creep function and the Poisson ratio function.

With respect to covariances between two arbitrary strain tensor components at possibly
different places and times the most general case is determined by eight scalar functions of
present time and time of load application. For the special case of Poisson process viscous creep
these eight functions are determined by only three functions of which the two are the creep
function and the Poisson ratio function.

The stochastic nature of the constitutive tensor equation implies that also the local
equilibrium equations and the compatibility equations are stochastic. For given boundary
conditions it is only possible to obtain solutions if the constitutive tensor equation is linearized
with respect to the random stress increments. Thus all solutions are approximations.

In this Part I of the paper, solutions are given in a simple way for the average strain in a
body subjected to given external forces. For slender prismatic bodies the concept of random
curvature and elongation is formulated within the triaxial theory. In this light, Part I terminates
by a discussion of the uniaxial model of stochastic creep bending given by the writer in [3].

Part 2 of this paper concentrates on the special case of a biaxial model. Covariance function
solutions are given for stress fields that are homogeneous in the mean.
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